Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine)

Sun Hwa Kim, Ji Hoon Jeong, Kyung Chul Cho, Sung Wan Kim, Tae Gwan Park

1. Introduction

RNA interference (RNAi) using small interfering RNA (siRNA, a double-stranded RNA molecule having 21–23 bp) has recently provided a powerful tool for silencing a target gene in gene therapy. RNAi induces highly sequence-specific degradation of homologous mRNA by double-stranded RNA (dsRNA). The process of RNAi is very useful for genetic analysis and is likely to become a potent therapeutic approach for gene silencing [1,2]. The general mechanism of RNAi involves the cleavage of...
long dsRNA molecules into 21–23 nucleotides small interfering RNAs (siRNAs) by Dicer, an endogenous RNaseIII-like enzyme [3]. The siRNA is incorporated into a ribonuclease protein complex known as the RNA-induced silencing complex (RISC), which contains the proteins necessary for unwinding the double-stranded siRNA, binding, and cleaving the target messenger RNA [4]. In mammalian cells, exposure to dsRNAs with more than 30 bp in length triggers a sequence-nonspecific interferon response that leads to global inhibition of mRNA translation [5,6]. However, introduction of shorter siRNAs into mammalian cells results in mRNA degradation with great sequence specificity without the activation of an interferon response [1]. RNAi by synthetic siRNAs of 21–23 nucleotides depresses endogenous and exogenous gene expression in mammalian cells in vitro [7]. Recently, several groups have used siRNA for treating infectious diseases and cancers mediated by variant gene expression [8,9]. For specific gene silencing in a target tissue, a delivery system of siRNA is highly demanded. In the past decade, various kinds of cell-targeting ligands including antibodies, growth factors, peptides, transferrin, and folate have been conjugated to several types of gene carriers, such as polymer conjugates, liposomes, polymer micelles, and nano-particles for target-specific delivery [10–14]. Many bioactive agents including plasmid DNA, anti-sense oligonucleotides, anti-cancer agents, and imaging agents could be delivered site-specifically to target cells and tissues [11]. Among them, folate has been popularly used as a targeting ligand for plasmid DNA, doxorubicin, and anti-sense ODN [15].

In this study, an anti-green fluorescent protein (GFP) siRNA plasmid system (pSUPER-siGFP) was constructed and used to inhibit the expression of exogenous GFP in mammalian cells in a target-specific manner. The anti-GFP siRNA plasmid was complexed with a PEI-based cationic polymer conjugate, poly(ethyleneimine)–poly(ethylene glycol)–folate (PEI–PEG–FOL), and the complexes were transfected to folate receptor over-expressing cells that produce exogenous GFP. The pSUPER-siGFP/PEI–PEG–FOL complexes were characterized with dynamic light scattering and gel electrophoresis and their cell-specific gene silencing effect was comparatively and quantitatively examined using folate receptor positive cells (KB cells) and folate receptor negative cells (A549 cells). The extent of GFP inhibition in KB cells was also analyzed by flow cytometry.

2. Materials and methods

2.1. Materials

Forward and reverse oligonucleotides for cloning anti-GFP siRNA sequence were synthesized and purified by Bioneer (Daejeon, Republic of Korea). A mammalian siRNA expression vector, pSUPER-RNai (3176 bp), was purchased from Oligoengine (Seattle, WA). Poly(ethyleneimine) (branched PEI, MW 25,000) was supplied from Aldrich (Milwaukee, WI). Poly(ethylene glycol) (COOH–PEG–NH2,MW 3400) was obtained from Nektar (Huntsville, AL). Folate and N-hydroxysuccinimide (NHS) were obtained from Sigma (St. Louis, MO). Dicyclohexylcarbodiimide (DCC) was purchased from Fluka Chemie (Buchs, Switzerland). Dulbecco’s phosphate buffered saline (PBS), fetal bovine serum (FBS), Roswell Park Memorial Institute 1640 medium (RPMI 1640), and folate-free RPMI 1640 were obtained from Gibco BRL (Grand Island, NY). DNase I was purchased from Promega (Madison, WI). A pEGFP-C1 vector was obtained from BD Bioscience Clontech (Palo Alto, CA). All other chemicals and reagents were of analytical grade.

2.2. Construction of anti-GFP siRNA expression vector (pSUPER-siGFP)

A siRNA-expressing sequence for targeting the GFP gene was cloned into a pSUPER RNAi system. As shown in Fig. 1A, forward and reverse target sequences of the anti-GFP ODN in the pSUPER RNAi was constructed and used to inhibit the expression of exogenous GFP in mammalian cells in a target-specific manner. The anti-GFP siRNA plasmid was complexed with a PEI-based cationic polymer conjugate, poly(ethyleneimine)–poly(ethylene glycol)–folate (PEI–PEG–FOL), and the complexes were transfected to folate receptor over-expressing cells that produce exogenous GFP. The pSUPER-siGFP/PEI–PEG–FOL complexes were characterized with dynamic light scattering and gel electrophoresis and their cell-specific gene silencing effect was comparatively and quantitatively examined using folate receptor positive cells (KB cells) and folate receptor negative cells (A549 cells). The extent of GFP inhibition in KB cells was also analyzed by flow cytometry.
tion enzymes. The recombinant plasmid was transformed into XL1blue _E. coli_ strain and the resultant cells were cultured in LB-ampicillin containing medium. Colonies containing empty plasmids or cloned vectors were recovered. The recombinant plasmids in the selected colonies were prepared, digested with _Hind_ III and _EcoR_ I, and run on 0.8% agarose gel to isolate the cells containing pSUPER-
siGFP. Fig. 1A shows a schematic diagram of the anti-GFP siRNA expression vector (pSUPER-siGFP), which produces a hairpin type of the siRNA transcript.

2.3. Preparation of PEI–PEG–FOL conjugate

The PEI–PEG–FOL conjugate was synthesized according to the previous method with slight modification [13]. Briefly, folate (65 mg, 0.15 mmol), DCC (30 mg, 0.15 mmol), and NHS (17 mg, 0.15 mmol) were dissolved in anhydrous DMSO. The activation reaction proceeded under nitrogen for 1 h at room temperature. The insoluble dicyclohexylurea was removed by filtration (0.45 µm Teflon filter). A hetero-functional PEG derivative (COOH–PEG–NH2, 178 mg, 0.05 mmol) dissolved in DMSO was added into the activated folate solution. The PEG–FOL conjugate was dialyzed (MWCO 1000) against deionized water to remove un-reacted substrates and then lyophilized. The terminal carboxylic acid group of the COOH–PEG–FOL conjugate (150 mg, 0.04 mmol) was also activated with DCC/NHS chemistry in DMSO and conjugated to primary amine groups of PEI (320 mg, 12.8 µmol) dissolved in DMSO. The reaction was carried out at room temperature under nitrogen for 1 h. The reacted conjugate was dialyzed (MWCO 10,000) against deionized water to remove un-reacted substrates and then lyophilized. The terminal carboxylic acid group of the COOH–PEG–FOL conjugate (150 mg, 0.04 mmol) was also activated with DCC/NHS chemistry in DMSO and conjugated to primary amine groups of PEI (320 mg, 12.8 µmol) dissolved in DMSO. The reaction was carried out at room temperature under nitrogen for 1 h. The reacted conjugate was dialyzed (MWCO 10,000) against deionized water to remove un-reacted substrates and then lyophilized. The terminal carboxylic acid group of the COOH–PEG–FOL conjugate (150 mg, 0.04 mmol) was also activated with DCC/NHS chemistry in DMSO and conjugated to primary amine groups of PEI (320 mg, 12.8 µmol) dissolved in DMSO. The reaction was carried out at room temperature under nitrogen for 1 h. The reacted conjugate was dialyzed (MWCO 10,000) against deionized water to remove un-reacted substrates and then lyophilized. The stoichiometric molar ratio of conjugation between PEI and PEG–FOL was determined by 400 MHz 1H NMR spectrometry.

2.4. Preparation and characterization of pSUPER-siGFP/PEI–PEG–FOL complex

2.4.1. Preparation of pSUPER-siGFP/PEI–PEG–FOL complex for transfection

For transfection of the pSUPER-siGFP vector, the plasmid was complexed with PEI–PEG–FOL conjugate in an aqueous phase under various conditions. Two micrograms of pSUPER-siGFP in 50 µl of phosphate buffered saline (PBS, pH 7.2) was mixed with PEI–PEG–FOL conjugates in 100 µl of PBS at a desired nitrogen/phosphate (N/P) ratio.

2.4.2. Size and ζ-potential of pSUPER-siGFP/PEI–PEG–FOL complex

The size and surface charge of pSUPER-siGFP/PEI–PEG–FOL complexes formed at various N/P ratios were estimated by using a dynamic light scattering instrument (Zeta-Plus, Brookhaven, New York). Three milliliters of the complex solution prepared at N/P ratios of 0–16 was analyzed at 25 °C.

2.4.3. Gel retardation assay of pSUPER-siGFP/PEI–PEG–FOL complex

The pSUPER-siGFP/PEI–PEG–FOL complexes prepared at different N/P ratios (0, 1, 2, 4, 8, and 16) were analyzed with gel retardation assay. Electrophoresis was carried out on 0.8% agarose gel with a current of 50 V for 1 h in TAE buffer solution (40 mM Tris–HCl, 1% (v/v) acetic acid, and 1 mM EDTA). The retardation of the complexes was visualized by staining with ethidium bromide.

2.4.4. DNase protection of pSUPER-siGFP/PEI–PEG–FOL complex

Fifty microliters of pSUPER-siGFP vector (20 µg) in PBS and 100 µl of different amounts of PEI–PEG–FOL or PEI (N/P ratio: 0, 8, 16) dissolved in PBS was mixed with 345 µl of a reaction buffer solution (10 mM Tris–Cl, 150 mM NaCl, pH 7.4). After incubating for 15 min at room temperature to produce pSUPER-siGFP/conjugate complexes, 5 units of DNase I (1 unit/µl) were added to the solution. To activate DNase, the sample solution was combined with 50 µl of Mg2+ solution (50 mM) and gently vortexed. At the start of reaction, absorbance at 260 nm was measured every 10 s for 20 min. The increment value was calculated for each time interval.

2.5. Cells and cell culture

KB (human epidermal carcinoma) cells over-expressing folate receptors and A549 (human lung carcinoma) cells deficient of folate receptors were used for receptor-mediated intracellular delivery of pSUPER-siGFP/PEI–PEG–FOL complex. All cell lines were purchased from the Korean Cell Line Bank (Seoul, Republic of Korea). KB and A549 cells were maintained in RPMI 1640 medium with or without folate, supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin at
37 °C in a humidified atmosphere of 5% CO2. The cells were regularly passaged at sub-confluence and plated 24 h before transfection with pEGFP-C1 vector, an expression vector of green fluorescent protein in mammalian cells.

2.6. Preparation of cells expressing green fluorescent protein

The cell lines transiently expressing GFP (GFP-KB cells and GFP-A549 cells) were prepared by transfecting pEGFP-C1 vector into the cells with the use of Lipofectamine™ reagents. The transfected cells were selected by incubation in G418 sulfate (Gibco, Tokyo, Japan) medium as described in previous studies [17,18]. First, the cultured cells were trypsinized and plated 24 h prior to transfection in a cell culture flask (75 cm², BD Falcon) at an initial density of 1.5 × 10⁷ cells. pEGFP-C1 vector (6 μg) was mixed with 36 μl of Lipofectamine Plus™ reagent (2 mg/ml, Invitrogen, Carlsbad, CA) in serum-free medium to make a final volume of 600 μl and was incubated for 15 min at room temperature. The solution was combined with 600 μl of dilution medium containing 36 μl of Lipofectamine™ reagent (2 mg/ml, Invitrogen, Carlsbad, CA) and incubated for 15 min at room temperature. Cells were then washed with PBS and the formed complexes were dropped in 4.8 ml of serum-free medium. After 3 h incubation, the reaction medium was replaced with 15 ml of fresh medium containing 10% FBS in the lack of G418 sulfate and cultured for another 24 h. For selection of GFP-expressing cells, the cells were grown in G418 selection medium (550 μg/ml) for 1 day. pEGFP-C1 transfected cells were isolated and used for intracellular delivery of pSUPER-siGFP/PEI–PEG–FOL complexes for suppressing the expression of exogenous GFP gene.

2.7. Transfection with pSUPER-siGFP/PEI–PEG–FOL complex

The GFP expressing cells were plated in a 6-well cell culture plate at a density of 2.5 × 10⁵ cells/well and incubated for 24 h before transfection. Two micrograms of pSUPER-siGFP was complexed with Lipofectamine, PEI, or PEI–PEG–FOL conjugate at various conditions (Lipofectamine: 12 μg; PEI and PEI–PEG–FOL N/P ratio: 0–24). The complexes were added to GFP expressing cells in 1ml of serum-free medium and incubated for 3 h at 37 °C. The cells were then cultured in 10% FBS media for 24 h and the level of GFP fluorescence was detected. Transfected cells were harvested by treating with a cell lysis buffer solution (Cellytic M cell lysis reagent, Sigma) followed by centrifugation at 14,000 rpm for 5 min. The supernatant was analyzed using a spectrofluorophotometer (SLM-AMINCO 8100, SLM Instruments Inc., USA) for determining the level of GFP expression in the cells. Excitation and emission wavelengths were 488 and 507 nm, respectively.

2.8. Flow cytometry

Fluorescence activated cell sorter (FACS) analysis was performed by seeding GFP transfected and non-transfected KB cells at a density of 2.5 × 10⁵ cells/well in a 6-well cell culture plate and treating them as described above. The cells were washed three times with PBS and fixed in 1% para-formaldehyde solution for 30 min at 4 °C. The fixed cells were washed twice with PBS and stored in 0.1% para-formaldehyde. Cells were analyzed by a FACSscan instrument (Becton Dickinson) using CELLQUEST software (PharMingen, USA).

3. Results and discussion

Instead of synthetic siRNA, GFP siRNA-expression vector system was constructed and used for GFP gene silencing in a cancer cell. Although direct delivery of synthetic siRNA into the cytosol would be more effective for non-dividing cells, the gene silencing effect is transient and non-inducible [19]. In contrast, the siRNA plasmid vector system requiring intranuclear localization can stably express siRNA in an inducible manner for fast dividing mammalian cells. Thus, for rapidly growing cancer cells in vitro, the siRNA plasmid vector system would be more ideal in demonstrating the gene inhibition effect. In this study, GFP was an exogenous target gene and pSUPER-siGFP was a mammalian vector used for anti-GFP siRNA-expression. Forward and reverse ODN sequences were designed according to the siRNA complementary GFP reported by Tiscornia et al. [16]. As described in Fig. 1A, the designed ODN sequence
includes a sense and antisense-GFP sequence, a loop region, a 3’ overhanging of T nucleotides, and restriction sites (BglII site: 5’ end, HindIII site: 3’ end), which produce a hairpin type anti-GFP siRNA transcript. The sense and antisense-GFP sequences, which are composed of nineteen nucleotides, were used for cleavage of the GFP mRNA. The 9-nt spacer that forms a loop is very important in producing a double stranded siRNA after the transcription process [19]. For efficient cleavage for destruction of the target mRNA, the siRNA duplex must have 2 or 3 nt overhanging 3’ ends [20]. Successful cloning of target ODN in the recombinant pSUPER vector was confirmed by agarose gel electrophoresis, as shown in Fig. 1B. The self-ligated pSUPER vector with no ODN insert presented a fragment of 227 bp, while the recombinant pSUPER-siGFP vector displayed a fragment approximately 287 bp in length. Colonies containing the cloned vectors were isolated to produce the pSUPER-siGFP plasmids.

To accomplish folate receptor-mediated delivery of the pSUPER-siGFP vector, a cationic polymeric conjugate, PEI–PEG–FOL, was synthesized. It contains a PEI part for condensation of DNA vector, a PEG spacer part for stabilization of polyelectrolyte complex, and a folate moiety for cancer cell targeting. The terminal γ-carboxylic acid group of folate was activated by NHS/DCC and then conjugated to the terminal amine group of a hetero-functional PEG derivative (COOH–PEG–NH2). It is generally known that folate has two α- and γ-carboxylic acids, but the γ-carboxylic acid is more selectively activated due to its higher reactivity [21,22]. The terminal carboxylic acid of the COOH–PEG–FOL conjugate was subsequently activated by DCC/NHS and reacted with the primary amine group of PEI. The synthesized PEI–PEG–FOL conjugate was corroborated by 1H NMR spectrum as shown in Fig. 2. From the relative intensity ratio of proton peaks corresponding to the –CH2– of PEI (2.8–3.1 ppm) and –CH2– of PEG (3.3–3.6 ppm), it was estimated that 4.64 molecules of PEG–FOL were attached to each PEI molecule. The molecular weight calculated was about 43,000. The PEI–PEG–FOL conjugate was complexed with pSUPER-siGFP vector in an aqueous phase at various stoichiometric nitrogen/phosphate (N/P) molar ratios between PEI and the plasmid vector. As shown in Fig. 3A, the size of the resultant pSUPER-siGFP/PEI–PEG–FOL complex decreased sharply with increasing N/P ratio. The size of the complex at the N/P ratio of 4

![Fig. 2. 1H NMR spectrum of FOL–PEG–PEI conjugate.](image-url)
reached 232.0 ± 0.4 nm, where the value of surface zeta-potential became positive at 10.3 ± 0.7 mV. At this N/P ratio, complete gel retardation was observed in 0.8% agarose gel (Fig. 2B). The size and surface charge of the polyelectrolyte complex was stable at the N/P ratio of 16, where the hydrodynamic diameter was 185.0 ± 0.3 nm with a narrow size distribution (polydispersity: 0.055) and the surface zeta-potential value was 14.9 ± 0.8 mV. The PEI–PEG–FOL/DNA complex was stable for more than a week even in serum medium, which was confirmed by 0.8% gel electrophoresis. There was no sign of any decomplexation behavior for PEI–PEG–FOL/DNA complex. The size of pSUPER-siGFP/PEI complexes formed at the same N/P ratio was 150.5 ± 1.5 nm with a surface zeta-potential value of 28.0 ± 0.3 mV. The increase in diameter of about 35 nm and the decrease in surface zeta-potential value upon complexing with the PEI–PEG–FOL conjugate suggest that PEG–FOL segments formed a surrounding corona around the inner core of pSUPER-siGFP/PEI complexes. The PEG shell was expected to play an important role not only in sterically stabilizing the structure of the complex [23] but also in protecting the siRNA vector from being attacked by nucleases [24–26]. DNase I protection analysis of pSUPER-siGFP vector complexed with PEI or PEI–PEG–FOL under various N/P ratios was depicted in Fig. 4. Naked pSUPER-siGFP vectors and pSUPER-siGFP/PEI complexes formulated at N/P ratios of 8 and 16 exhibited considerable fragmentation of DNA. The complexes with higher N/P ratio showed better protection of the complexed plasmid DNA from enzymatic digestion, suggesting that more condensed polyelectrolyte particles were produced at a higher N/P ratio [27]. pSUPER-siGFP/PEI–PEG–FOL complexes showed no evidence of DNA fragmentation when incubated with DNase I, implying that the inner core composed of PEI and pSUPER-siGFP was additionally protected by the PEG–FOL conjugate.

Fig. 3. (A) Effective diameters and surface charges of pSUPER-siGFP/PEI–PEG–FOL complexes as a function of N/P ratio. (B) Gel retardation analysis of the complexes.
stabilized by PEG chains, as demonstrated in previous studies [28,29].

To investigate the effect of post-transcriptional gene silencing on target cancer cells, the pSUPER-siGFP/PEI and pSUPER-siGFP/PEI–PEG–FOL complexes were transfected to GFP-expressing KB (GFP-KB) cells that were pre-transfected with a mammalian GFP expression vector (pEGFP-C1). Fig. 5 shows inhibition of GFP expression in GFP-KB cells at various N/P ratios of the two complexes. The relative level of GFP expression in cells was determined by normalizing green fluorescence intensity values of extracted proteins from the formulations with different N/P ratios, using non-treated GFP-KB cells as control. The GFP expression level for pSUPER-siGFP-KB cells transfected with pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes. The structural integrity of DNA/PEI complexes was largely dependent on N/P ratio, which directly influenced transfection efficiencies as reported previously [30]. The observed GFP gene expression level for pSUPER-siGFP/PEI–PEG–FOL complexes was more significantly reduced with increasing N/P ratios than those transfected with pSUPER-siGFP/PEI. The GFP expression level for pSUPER-siGFP/PEI–PEG–FOL complexes reached about 10.5 ± 2.5% at the N/P ratio of 24, whereas that for pSUPER-siGFP/PEI complexes showed 38.6 ± 1.1% at the same condition. The cytotoxicity of PEI–PEG–FOL was measured with MTT assay over the N/P ratio used for pSUPER-siGFP transfection. There was no detectable cytotoxic effect of PEI–PEG–FOL on KB cells (data not shown). Thus the increasing extent of gene inhibition with increasing N/P ratio can be attributed to formation of more compact pSUPER-siGFP/PEI inner core that stabilized the complexes.
The enhanced effect in gene silencing for pSUPER-siGFP/PEI–PEG–FOL complexes relative to pSUPER-siGFP/PEI complexes was most likely due to folate receptor-mediated endocytosis that promoted cellular uptake of the complexes. KB cells are human carcinoma cells that particularly over-express folate receptors on their surface [31]. Fig. 6 shows comparative gene silencing effects of pSUPER-siGFP/Lipofectamine, pSUPER-siGFP/PEI, and pSUPER-siGFP/PEI–PEG–FOL complexes for GFP-KB cells and GFP-A549 cells. A549 cells are folate receptor deficient human carcinoma cells. GFP-A549 cells incubated with the three complexes showed GFP inhibition levels from about 56.3% to 63.0%, while GFP-KB cells exhibited those from 10.5% to 38.6%. The different levels of gene silencing for the two cell lines can be attributed to cell-specific transfection efficiencies as reported previously [32]. It can be seen that only pSUPER-siGFP/PEI–PEG–FOL complexes inhibited GFP gene expression markedly in KB cells but not in A549 cells. The enhanced interference of GFP expression in KB cells was caused by increase in cellular uptake of pSUPER-siGFP vector via the process of folate receptor-mediated endocytosis. The results prove that intracellular delivery of pSUPER-siGFP vector occurred in a target-specific manner.

Fig. 7 shows flow cytometric analysis of KB cells and GFP-KB cells transfected with pSUPER-siGFP/Lipofectamine, pSUPER-siGFP/PEI, or pSUPER-siGFP/PEI–PEG–FOL complexes. The result was consistent with that of the cellular fluorescence intensity assay (Fig. 5). In an arbitrarily selected fluorescence gate region (1<FL-1<10), the gene inhibition effect of pSUPER-siGFP/PEI–PEG–FOL in GFP-KB cells was over 90%, while that of complexes without folate moieties was no more than ca. 40–50%. This also demonstrated that a PEI–PEG–FOL conjugate was a useful carrier for cancer cell specific intracellular delivery of anti-GFP siRNA expression vector.

In conclusion, anti-GFP siRNA plasmid DNA was intracellularly delivered to folate receptor positive cells by complexing with a synthetic PEI–PEG–FOL conjugate. The complexes suppressed exogenous GFP expression in a cell-specific manner. Inhibition of the GFP gene expression occurred via a folate receptor-mediated endocytotic process. This formulation strategy can be applied to a wide range of post-transcriptional gene silencing therapeutics including siRNA expression plasmids.

Acknowledgements

This work was supported by the grant (M1-0214-00-0117) from the Ministry of Science and Technology, Korea.
References


