
A Comparison of Binarization Methods for Historical Archive Documents

J. He, Q. D. M. Do*, A. C. Downton and J. H. Kim*

Department of Electronic Systems Engineering, University of Essex, UK. Email: {jhe, acd}@essex.ac.uk
*Division of Computer Science, KAIST, Kusung-Dong, Yusung-Gu, Daejon, Korea. Email: {quan, jkim}@ai.kaist.ac.kr

Abstract

This paper compares several alternative binarization

algorithms for historical archive documents, by evaluating
their effect on end-to-end word recognition performance in

a complete archive document recognition system utilising
a commercial OCR engine. The algorithms evaluated are:

global thresholding; Niblack’s and Sauvola’s algorithms;
adaptive versions of Niblack’s and Sauvola’s algorithms;

and Niblack’s and Sauvola’s algorithms applied to
background removed images. We found that, for our

archive documents, Niblack’s algorithm can achieve better
performance than Sauvola’s (which has been claimed as

an evolution of Niblack’s algorithm), and that it also
achieved better performance than the internal binarization

provided as part of the commercial OCR engine.

1 Introduction

Digital archive construction from historic paper

archives is a major document image analysis application of

interest both for cultural and scientific purposes. For

example, archives at the UK Natural History Museum

(NHM) are recorded in card indexes, which contain

bibliographical data and other information for one

scientific name on each card laid out in a standardised

format (Fig. 1) for each index.

We have designed a user-configurable archive

document processing system [1] to extract text fields from

NHM card images and then feed them into a commercial

OCR engine for recognition. The quality of the images

however has a significant impact on the OCR

performance, since most historical archive document

images are of poor quality due to aging and discoloured

cards and ink fading. In pursuit of high quality

text/background segmentation, we investigated two well-

known binarization algorithms (Niblack’s and Sauvola’s),

and also developed two algorithm variants, adaptive

Niblack, and adaptive Sauvola. We also investigated an

alternative color segmentation algorithm which clusters

out the foreground texture from the background. Finally,

we compared our 6 algorithm alternatives with the

performance achieved using an optimised global threshold

and with the internal binarization algorithm included in the

commercial OCR engine.

Figure 1. An index card with multiple hand print and

handwriting annotations.

2 Binarization Methods

2.1 Global Thresholding

The global thresholding algorithm chooses a fixed

intensity threshold value T (from 0 to 255). If the intensity

value of any pixel of an input image is more than T, the

pixel is set to white otherwise it is black (see Fig. 2). If

the source is a colour image, it first has to be converted to

grey level using the standard conversion:

Grey = 0.3R + 0.59G + 0.11 B (1)
where R, G, and B represent the colours red, green and

blue respectively, with values from 0 to 255. All

algorithms except colour segmentation (Section 2.6) are

applied to grey level images.

 (a) (b)

 (c) (d)

Figure 2. Global threshold (a) T=140 (b) T=160 (c) T=175

(d) T=200

Fig.2 (c) shows that global thresholding gives a

promising result if a proper threshold can be selected.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

However, it is difficult to achieve consistent quality with a

fixed threshold while processing a batch of archive

images, because both foreground and background colours

vary significantly between images.

2.2 Niblack’s Algorithm

 Niblack’s algorithm [2] calculates a pixelwise

threshold by sliding a rectangular window over the grey-

level image. The threshold T is computed by using the

mean m and standard deviation s, of all the pixels in the

window, and is denoted as:

T = m + k*s (2)
where k is a constant, which determines how much of the

total print object edge is retained, and has a value between

0 and 1. The value of k and the size SW of the sliding

window define the quality of binarization. Fig.3 (a), (b)

show binarization gives thick and unclear strokes with a

small k value, and slim and broken strokes with a large k

value, while with a small SW value noise is closer to

texture as shown in Fig.3(c). Values for SW and k
respectively of 25x25 pixels and 0.6 were heuristically

optimal (see Fig 3 (d)).

 (a) (b)

 (c) (d)

Figure 3. (a) with SW 25x25 and k 0.1 (b) with SW 25x25

and k 0.9 (c) with SW 11x11 and k 0.6 (d) with SW 25x25

and k 0.6

2.3 Adaptive Niblack’s Algorithm

In archive document processing, it is difficult to

identify suitable SW and k values for all images, as the

character size of both frame and stroke may vary image by

image. Improper choice of SW and k values results in poor

binarization as shown in fig. 3(a),(b),(c). We modified

Niblack’s algorithm to allow automatically chosen values

for k and SW, which we called adaptive Niblack’s

algorithm (see Fig. 4). This comprises five steps:

Step 1: Binarize the image I (grey level) by using the

global thresholding algorithm to roughly estimate texture

area;

Step 2: Split the binarized image (texture area) into

small blocks Bis by identifying binary connected

components which create rectangular areas of continuous

connected black pixels (see Fig. 4) ;

Figure 4. Rectangular blocks created by BCCS

Step 3: Calculate the ratio r of number of black pixels

against white for each block, and allocate a relevant k

(from 0 to 1) value for the block according to its r. The

higher r, the higher the density of black pixels (for

example due to thicker strokes), hence a larger k is

needed compared with thin strokes.

Step 4: Measure the height h of each block. SW is set

as hxh

Step 5: Pad Bi with edge pixels (say 3 pixels wide), to

ensure enough surrounding pixels are included for m and s

calculation. Then use Niblack’s algorithm to binarize each

block Bi in I using its local SW and k obtained from step 3

and 4, ignoring other background.

The most important strength of this method is that it

avoids noise being generated in non-texture areas which

can occur when Niblack’s algorithm is applied to images

with large non-texture areas (see Fig. 5).

(a)

(b)

(c)

Figure 5. (a) original image (b) Niblack’s algorithm

(c) adaptive Niblack’s algorithm

2.4 Sauvola’s Algorithm

Sauvola’s algorithm [3] is a modification of Niblack’s

which is claimed to give improved performance on

documents in which the background contains light texture,

big variations and uneven illumination. In this algorithm, a

threshold is computed with the dynamic range of the

standard deviation, R, using the equation:

T = m * (1 + k (s/R -1)) (3)

where m and s are again the mean and standard deviation

of the whole window and k is a fixed value.

 (a) (b)

 (c) (d)

Figure 6: Results of Sauvola’s algorithm (a) w=15x15,

k=0.05; (b) w=15x15, k=0.12; (c) w=15x15, k=0.25; (d)

w=9x9, k=0.12

In our experiments, we found that the value of R has a

very small effect on the quality while the values of k and

window size affect it significantly. The smaller the value

of k, the thicker is the binarized stroke, and the more

overlap exists between characters. A smaller window size

will produce thinner strokes. An optimal combination of k

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

and SW will produce a good binary image. In our

experiments, we set R as 128. Fig. 6 shows some binary

images obtained by this algorithm and the effects of the

values of k and window size on the binary results.

2.5 Adaptive Sauvola’s Algorithm

With the original Sauvola’s algorithm, a good choice

of k and window size varies significantly from image to

image. Parameters should be chosen adaptively for each

image and even for each small window. This analysis

leads to two proposed improvements to the algorithm.

Firstly, the window should be big enough to preserve the

thickness of strokes [1]; we chose half of the height of the

input characters as the window size. Secondly, the k value

should be chosen adaptively for each small window. This k

should be representative of both global (overall image) and

local (current window) image characteristics. To do this,

we estimated k’ and k’’, the local and global values of k
respectively, from equation (2) by estimating a threshold:

k = (T – m)/s (4)
where T is a threshold estimated by Niblack’s algorithm

since it is quite consistent over a range of values of k
between 0.4 to 0.7 and the window size is big enough to

cover a character. Then the value of k is defined by this

equation:

k = (1-) * k’ + * k’’ (5)

where is a global coefficient which defines how much

the global information affects the threshold. The value of

 is chosen from our experiments.

 (a) (b)

 (c) (d)

 (e)

Figure 7: results of adaptive Sauvola’s method (a) original

images, (b) best Sauvola’s result, (c) Adaptive Sauvola’s

with =0.1 (d) adaptive Niblack’s (e) best Niblack’s

result (In c,d,e, noise in character “l” is removed

perfectly);

2.6 Color Segmentation

A predefined color map (a collection of clusters) can

be used to segment the foreground (useful text) from the

background. The foreground is then binarized by using a

binarization algorithm. Fig. 8 shows an example of

segmented texts in black and red ink respectively. Details

of our colour segmentation method have previously been

described [4]. However, simply setting all foreground

pixels to black in this case produces character images with

very thick strokes (see Fig. 8, 1(c) and 2(c)), hence we also

applied Niblack’s algorithm to the residual foreground

colour image (converted to greyscale) to erode the strokes

to optimum thickness (as perceived by the OCR).

 1(a) 2 (a)

 1 (b) 2 (b)

 1(c) 2 (c)

Figure 8: 1(a) and 2(a) are original colour text images; 1(b)

and 2(b) are segmented foreground text in red and black

ink respectively; 1(c) and 2 (c) are binarized foreground

text.

3 Evaluation Methods

Evaluation was carried out on a set of 4435

species/genus images extracted randomly from the dataset

of 27,578 Pyraloidea archive card images for which a full

online database exists [5]. Each image contains only one

typewritten word with height typically 23 to 25 pixels,

which is either typed in black or red with grey/yellow

background (due to age discolouration of the cards). The

size of each word image is equal to its contained word size

padded with an edge of 10 pixels as shown in Fig. 8 1(a),

2(a). These images were processed by the various

binarization methods described in section 2 and fed into a

commercial OCR system, Abbyy 6.0, for recognition. The

OCR results were then compared with truth data from the

NHM database, using word-level comparison, where any

character error in a word is counted as an overall word

error (i.e. in Table 2, only methods 3.3 and 3.7 give the

correct output).

3.1 Default OCR – ABBYY

The Abbyy system has its own image pre-processing

tool which converts colour images into binary and feeds

them on for OCR. In other words, original colour images

without any binarization can be directly fed to Abbyy for

recognition, as well as pre-binarized images. The results

obtained from this method are regarded as a standard

reference for comparison with other methods.

3.2 Global Thresholding

A preliminary experiment was carried out on an

independent small set of 335 images (which are similar to

the test set of 4435 images). This determined that a global

threshold of 165 achieved the highest recognition rate.

Therefore, for the final evaluation, the testset of 4435

images were binarized with a global threshold of 165.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

3.3 Niblack’s Algorithm on Original Images

By carrying out experiments on the same training set of

335 images with k values varied from 0.1 to 0.9 in steps of

0.1 and SW from 9x9 to 27x27 pixels in steps of 2 pixels

(total 7x10 combinations), the highest recognition rate was

achieved when SW and k were respectively chosen as

25x25 pixels and 0.6. The optimum SW value corresponds

to a “just-fit” character height. Using the optimal SW and

k, the test set of 4435 images were processed using

Niblack’s algorithm, and then fed into Abbyy for

recognition.

3.4 Niblack’s Algorithm on Background Removed

Images

The background was removed from the 4435 image

testset using the colour segmentation algorithm described

in Section 2.6. Using the same training method as Section

3.3 (training set images also had their background

removed), we found values for SW and k of 25x25 pixels

and 0.7 respectively achieved the highest recognition rate.

The 4435 testset images were then processed using

Niblack’s algorithm with optimal SW and k values.

3.5 Sauvola’s Algorithm on Original Image

The same method was applied as described in Section

3.3, except we replaced Niblack’s algorithm with

Sauvola’s for binarization. Here also we used the same

training method to find the optimal SW and k, which were

9x9 pixels and 0.09 respectively.

3.6 Sauvola’s Algorithm on Background Removed

Images

The same method was applied as described in Section

3.4, except we replaced Niblack’s algorithm with

Sauvola’s for binarization. Here also we used the same

training method to find the optimal SW and k, which were

13x13 and 0.15 respectively.

3.7 Adaptive Niblack’s Algorithm

The 4435 image testset was processed using the

adaptive Niblack’s algorithm described in Section 2.3.

3.8 Adaptive Sauvola’s Algorithm

The 4435 image testset was processed using the

adaptive Sauvola’s algorithm with fixed SW of 9x9 pixels,

global k’ 0.9 and local k’’ 0.1.

4. Results

The recognition results from the eight different

evaluation methods are presented in Table 1. Table 2 gives

an example of a binarized word image using each

binarization method, and the corresponding OCR results.

From analysis of the results, the following conclusions can

be reached:

1. Unsurprisingly, global threshold binarization (3.1)

has the poorest result, performing worse than any of

the local thresholding algorithms.

2. Niblack’s algorithm (3.3) with optimal parameters

performs better than the Abbyy OCR binarization and

all Sauvola-related algorithms.

3. Adaptive Niblack’s algorithm (3.7) performs only

marginally better than the standard Niblack algorithm

(3.3). The reason the adaptive algorithm can’t give

any further improvement is because much of the

evaluation data consists of connected characters as

shown in Fig. 9. Therefore, the values of SW and k

are mostly chosen based on multi-character binary

connected components rather than single character,

hence SW and k are sometimes no more optimal than

with the standard Niblack algorithm.

4. Niblack’s and Sauvola’s algorithms working on

background removed image (3.4 and 3.6) don’t

achieve any overall improvement in recognition, as

the colour segmentation algorithm itself has an error

rate of 2%, which reduces the end-to-end word

recognition rate. However, even if we ignore these

errors, the result is still worse than 3.3 and 3.5. This

indicates that both Niblack’s and Sauvola’s algorithm

count the background information especially around

foreground texture as an important feature for local

threshold calculation.

5. The adaptive Sauvola’s algorithm (3.8) has better

performance than the traditional one (3.5), but still

performs less well than either of the Niblack

algorithms (3.3 and 3.7) or the Abbyy internal

binarization (3.1).

Fig. 9 Tightly connected characters

5. Discussion

Previous research [3] has claimed that Sauvola’s

algorithm has superior performance to Niblack’s. Our

experimental work with archive documents suggests this is

not always true. One of the important advantages of

Sauvola’s algorithm is that it generates much less noise

than Niblack’s. For our evaluation data, both Niblack’s

and adaptive Niblack’s algorithm were found to minimize

noise to the same low level as Sauvola’s algorithm. Under

these circumstances, Niblack’s algorithm achieves

superior performance than Sauvola’s when both must have

fixed parameters but deal with varying background images,

as is shown by comparison of the evaluations in 3.5 and

3.6 with those in 3.3 and 3.4. This phenomenon indicates

that Sauvola’s algorithm is more sensitive to the change of

background than Niblack’s, and is hence more difficult to

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

tune to varying backgrounds over a complete dataset. The

backgrounds of our evaluation data vary significantly

image by image (see Fig. 10). In Sauvola’s evaluation data

[3], the background of images didn’t appear to vary so

much. Although our new adaptive version of Sauvola’s

algorithm can improve the performance, it is still worse

than Niblack’s. However, Sauvola’s algorithm has other

advantages: it costs less computationally, as a smaller SW

is used than Niblack’s algorithm. Our conclusion is that

the choice of algorithm is really case-dependent.

Table 1 Evaluation results (4435 word images)

Methods Algorithm Correct Rate(%)

3.1 ABBYY 3720 83.9

3.2 Global 3409 76.9

3.3 Niblack 3780 85.2

3.4 Niblack-BG 3701 83.4

3.5 Sauvola 3658 82.5

3.6 Sauvola-BG 3578 80.7

3.7 Ad-Niblack 3781 85.3

3.8 Ad-Sauvola 3701 83.4

(a) (b)

Fig.10 (a) light background (b) darker background

6 Conclusion

This paper has presented a comparison of several

binarization algorithms by measuring their end-to-end

word recognition performance on archive document word

images. We drew several conclusions. First, for this

archive word image dataset, Niblack’s algorithm and our

new adaptive Niblack’s algorithm performed better than

the internal binarization included in the commercial OCR

engine. Furthermore, contrary to previously reported

results, under some circumstances (e.g. archive documents

with significantly varying background), Niblack’s

algorithm appears to perform better than Sauvola’s,

Our proposed refinements to existing algorithms,

adaptive Niblack’s and adaptive Sauvola’s, both achieved

slightly better performance than the originals. As both

Niblack’s and Sauvola’s algorithm need to utilise some

information hidden in the background for local threshold

calculation, removing the background from images before

these two algorithms are applied doesn’t bring any benefit

in better binarization. Finally, as might be expected, all the

local thresholding algorithms we tested have superior

performance to a global thresholding algorithm.

Table 2. Example of Evaluation Result

Method Image OCR Text

3.1 ODCNTABTHRIA

3.2 ODCNtABTHBIA

3.3 ODONTARTHRIA

3.4 GDCHTARTHBIA

3.5 ODQHTARTHRIA

3.6 GDOmAKEBKEA

3.7 ODONTARTHRIA

3.8 ODQHTARTHRIA

References

[1] J.He, A. C.Downton, ‘User-Assisted OCR

Enhancement for Digital Archive Construction’,

submitted to ICDAR 2005.

[2] W.Niblack, An Introduction to Digital Image

Processing. Prentice Hall, Englewood Cliffs, 1986.

[3] J.Sauvola,T,Seppanen, S.Haapakoski and

M.Pietikainen, Adaptive Document Binarization,

ICDAR'97 4th Int. Conf. On Document Analysis and

Recognition, Ulm, Germany, August 1997, pp.147-

152.

[4] J.He, A. C. Downton, ‘Colour Map Classification for

Archive Docuements’, 6th International Workshop,

Document Analysis Systems, DAS 2004, pp.241-251.

[5] G. Beccaloni, M. Scoble, G. Robinson and B. Pitkin,

The Global Lepidoptera Names Index,

http://www.nhm.ac.uk/entomology/lepindex.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

