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Abstract
Background: Mathematical modeling is being applied to increasingly complex biological systems and datasets; 
however, the process of analyzing and calibrating against experimental data is often challenging and a rate limiting 
step in model development. To address this problem, we developed a systematic methodology for calibrating 
quantitative models of dynamic biological processes and illustrate its utility by validating a model of TRAIL (Tumor 
necrosis factor Related Apoptosis-Inducing Ligand)-induced cell death.

Results: We propose a serial framework integrating analysis and calibration modules and we compare various 
methods for global sensitivity analysis and global parameter estimation. First, adequacy of the network structure is 
checked by global sensitivity analysis to changes in concentrations of molecular species, validating that the model can 
reproduce qualitative features of the system behavior derived from experiments or literature surveys. Second, rate 
parameters are ranked by importance using gradient-based and variance-based sensitivity indices, and we 
systematically determine the optimal number of parameters to include in model calibration. Third, deterministic, 
stochastic and hybrid algorithms for global optimization are applied to estimate the values of the most important 
parameters by fitting to time series data. We compare the performance of these three optimization algorithms.

Conclusions: Our proposed framework covers the entire process from validating a proto-model to establishing a 
realistic model for in silico experiments and thereby provides a generalized workflow for the construction of predictive 
models of complex network systems.

Background
Comprehensive and predictive models of biological sys-
tems are expected to improve our ability to analyze com-
plex systems, from molecular pathways to populations of
organisms. Thus, there is much interest in sophisticated
computational modeling techniques and high-through-
put data generation [1]. One of the major difficulties in
modeling cell signaling networks is the identification of
the directionality and strength of relationship between
molecular species in specific pathways. However, once
this has been done, the knowledge can be formalized in
mathematical models based on various computational
methods. In particular, differential equations are widely

used in biological modeling to describe dynamic pro-
cesses in terms of rates of change [2-4]. The variables in
these models represent the concentrations of molecular
species and the directionality and strength of their rela-
tionships are encoded in the rate parameters governing
their interactions. Following the construction of a mathe-
matical representation, cycles of experimental validation
and model improvement are essential for generating a
predictive model, by ensuring that all required molecular
species are adequately represented and that the parame-
ter values are accurate. However, calibration of the math-
ematical model is not trivial because non-linearity and
feedback/feedforward connections commonly found in
cell signaling pathways make the analysis difficult [5,6].
Here, we develop a systematic methodology for validating
quantitative models of biological processes and apply our
methodology to an existing model of TRAIL-induced
apoptosis [7].
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Systematic procedure of model calibration
Model calibration or regression by data fitting is neces-
sary for computational modeling in any field of science or
engineering. Systems biology faces the same challenge to
construct experimentally validated models. However, for-
mal tools for quantitative biological models have not
been established yet and manual analysis is common in
practice. In fact, manual fitting has the advantage that
researchers may apply their experimental intuition or
prior knowledge to the model relatively easily with mini-
mal aid of mathematical or computational skills. How-
ever, the structural complexity of signaling pathways
makes it difficult to fit the model heuristically based on
intuition or simple analyses only. There are three domi-
nant differences between manual fitting and systematic
calibration: (1) As in Yang's work [8], manual fitting is
attempted to estimate uncertain parameter values which
cannot be decided directly by experimental measurement
or literature. On the other hand, the systematic calibra-
tion in our study aims principally to estimate, among
uncertain parameters, only the most important. We
investigated the individual effect of parameters and
focused on the dominant parameters to calibrate the
model. (2) Manual fitting is carried out mainly by a trial-
and-error process that does not guarantee optimal fit of
the model. On the other hand, our systematic calibration
method approaches the problem globally over the multi-
dimensional domain of important uncertain parameters.
Thus, it has higher probability of finding the optimal
solution. (3) Manual fitting ends with what are, at the
time, the best parameter values, while systematic calibra-
tion provides additional information, such as important
subsets of pathways in a network or possible local opti-
mum solutions.

We have developed a systematic calibration procedure
for testing and improving models as shown in Figure 1. In
the first step, the model is constructed based on informa-
tion from the literature and analyzed qualitatively to
ensure that it is in agreement with prior knowledge about
the network. Usually, the construction of the network
model is based on information from the literature and
published experimental results are what we aim to quali-
tatively reproduce. Because only the structural character-
istics of the model are of interest in this step, a model
with tentative parameter values is not necessarily
expected to reproduce experimental data quantitatively.
The suitability of the proto-model can be assessed by
analyzing output sensitivities to input variables values
under presumed uncertainties of the rate parameters
(Figure 1; Qualitative analysis). Candidate model modifi-
cations are iterated until a satisfactory qualitative match
to the prior knowledge is obtained.

In the second step, we assess whether a subset of path-
way reactions dominantly affects the model outputs,

focusing on the outputs that are described by the experi-
mental data to be used in the calibration step (Figure 1;
Dominant Parameter Selection). Identification of domi-
nant reactions is done by sensitivity analysis; many meth-
ods exist [9-14] and we adopted two methods that are
most appropriate to nonlinear network models (Table 1).

In the third step, we perform a quantitative fit, or cali-
bration, of the model to experimental data, to determine
parameter values that minimize the deviations between
experimental results and model simulations (Figure 1;
Estimation of globally optimal fit). Parameter estimation
by global optimization has been developed for engineer-
ing optimization problems [15,16]. Below we investigate
the advantages and disadvantages of three methods for
biological applications, including computational effi-
ciency, and compare the results (Table 1).

Lastly, as the model evolves in light of newly available
data, the overall procedure should be iterated. We believe
that by implementing the intermediary steps where sensi-
tivity analyses are used both to assess the qualitative
behavior of the model and determine which parameters
to optimize, our systematic method will significantly
facilitate model calibration.

Results and discussion
Qualitative analysis of a proto-model
Analysis of sensitivity with respect to initial species con-
centrations provides a criterion for the qualitative cor-
rectness of a cell signaling model. Sensitivity analysis
assesses how changes in model inputs contribute to
model output variability, and its ability to deduce model
input-output relationships makes sensitivity analysis one
of the critical parts of model development, verification,
and evaluation. Changes in initial species concentrations
can mimic the effects of mutations or changes in the
expression level of the molecular players involved, and
the sensitivity of the model output to changes in initial
species concentrations should match the expected
change in system behavior.

The simplest and most generally used sensitivity analy-
sis method is a gradient-based index as follows,

where model outputs and inputs are represented as yi
and pj respectively. This method is often called local sen-
sitivity because it reflects output variability accurately
near a given nominal input value, p*. However, most
kinetic parameters are quite uncertain and a range rather
than a single parameter value is available, either from the
literature or from biophysical constraints on the reac-
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tions. Thus, "model-independent", or more precisely,
parameter-independent, global sensitivity analysis tech-
niques have generated great interest[10]. Averaging of
local sensitivities over a range of plausible values for
uncertain parameters is one possible method for global
sensitivity. Local sensitivities are calculated with multiple
parameter choices that are selected randomly or regularly
within parameter ranges. The sensitivities for those
parameter choices, integrated over the time interval of
interest in the monitoring of the output, |Sij(t)|dt, are
then averaged to determine global sensitivity [17]. Impor-
tantly, because integration over time and averaging are
necessary, a compromise must be made between accu-
rately calculating the magnitude of the effects by using
absolute sensitivity values, and assessing the directional-
ity of the effects, by maintaining the sign of the values.

The model on which we applied our methodology sim-
ulates the response of a single cell to TRAIL. TRAIL is a
protein ligand which triggers the process of programmed
cell death, or apoptosis. This model of TRAIL-induced
cell death signaling network encompasses the activation
of initiator (caspase-8 or C8) and effector (caspase-3 or
C3) caspases, the onset of mitochondrial outer mem-
brane permeabilization and the death of the cell, as
marked by cleavage of the caspase-3 substrate, PARP.
According to a recent study [7], extrinsic apoptosis shows
a specific behavior of all-or-none effector caspase activa-

tion at the single-cell level. As the authors termed it, the
process shows "variable-delay, snap-action": a long, vari-
able delay between TRAIL stimulation and effector cas-
pase activation is followed by rapid and sudden
progression to completion. The original model is com-
posed of 58 ordinary differential equations based on mass
action kinetics. Eighteen out of 58 protein species have
non-zero initial concentrations, and 70 rate constants
regulate the reactions in the model network. The original
parameters were determined from the literature and
manual fitting. In this study, we applied our methods to
analyze qualitative properties of the model and fit the
model to dynamic quantitative experimental data in a
systematical and computationally effective way. Hereaf-
ter, the original model in [7] will be referred to as the
manually calibrated model, to distinguish it from our
improved model.

In our analysis, cleavage of PARP is the key output;
because the process is all-or-none, if >50% of PARP is
cleaved, it is eventually all cleaved and thus a simulated
cell is deemed dead at 50% cleaved PARP (see Methods).
We first evaluated sensitivities of the cleavage of PARP
with respect to changes in initial species concentrations,
sampling over a range of plausible parameter values
(range described in Methods). In this case, instead of
averaging the sensitivities over the sampled range of
parameter values, we plotted their distributions in a box

Figure 1 Schematic workflow for efficient model calibration.
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plot, to preserve the directionality of the effect in the sign
of the sensitivities (Figure 2). We interpreted the results
in three ways. First, proteins with positive sensitivity
would promote PARP cleavage and thus were pro-apop-
totic, and by corollary, proteins with negative sensitivity
would repress PARP cleavage and had an anti-apoptotic
effect. The pro- or anti-apoptotic nature of TRAIL-
induced signaling proteins has been identified in the liter-
ature and should be encoded properly in the mathemati-
cal model. For instance, XIAP (an inhibitor of caspase-3)
is a well known anti-apoptotic player, and the sensitivity
of PARP cleavage with respect to XIAP was correctly
shown to be negative (Figure 2). Conversely, Smac, when
released from the mitochondria, inhibits XIAP and thus
the positive sign of sensitivity with respect to the mito-
chondrial store of Smac, Smacm, agrees with its pro-
apoptotic nature (Figure 2). By similarly assessing the sign
of the sensitivity of each protein, the TRAIL-induced cell
death proto-model could be validated.

Second, the absolute value of sensitivity provides a
measure of how strongly the perturbation of a single spe-
cies' concentration affects the model output. The sensi-
tivity with respect to perturbation of XIAP was found to
be relatively high on average, implying that the model
output can be changed dramatically by small changes in
XIAP (Figure 2). This prediction is supported by biologi-
cal evidence that XIAP directly inhibits the enzymatic
activity of caspases and the degree of inhibition is highly
dependent on the concentration of XIAP[18]. Cleavage of
PARP is insensitive to the concentration of caspase-6
(C6), in agreement with experiments in which reducing
the expression of caspase-6 by ~90% did not affect
TRAIL-induced cell death (Figure 2; [7]). Overall, our
sensitivity analysis agreed with the known effects of vary-
ing protein concentration. If, however, the signs or

strengths of the sensitivities in our analysis had not
agreed with experimental results, the model construction
would have to be re-examined. Modification of the model
and this qualitative analysis would be done iteratively
until a satisfactory result could be reached. Although the
TRAIL model study does not provide us with an example
of failure of qualitative agreement at this step of the pro-
cedure, it is still worth noting that qualitative agreement
with known experimental system behavior can be a
strong preliminary criteria for adequacy of the model
structure. In effect, it sets a minimal qualification that
must be met before more computationally intensive

Table 1: The computational methods used for analyzing the network model

Computational methods Searching principle Reference

Sensitivity analysis Local sensitivity Local

Average of local sensitivities Global [17]

Sobol's method [11]

First-order sensitivity Global

Total-effect sensitivity Global

Parameter estimation Local estimation Local, deterministic

Multi-start of local estimations Global, deterministic

Evolutionary strategy using stochastic ranking (SRES) Global, stochastic [22]

Figure 2 Distribution of sensitivity of PARP cleavage. Each box 
plot shows the distribution of sensitivity of PARP cleavage with respect 
to change in non-zero initial species concentrations determined by av-
erage of local gradient-based sensitivities.
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methods are applied to improve the proto-model by
quantitative fitting.

In a third type of assessment of the results our sensitiv-
ity analysis of PARP cleavage, we analyzed the influence
of the uncertainty of rate constants on the sensitivity with
respect to initial species concentrations. Sensitivities that
are not affected by parameter values will have narrow dis-
tributions, and by consequence, their sensitivity value is
very reliable. The sensitivities related to the perturbation
of some species like XIAP and caspase-8 were found to be
broadly distributed and thus to be relatively uncertain
(Figure 2). Particularly interesting is the fact that the sen-
sitivity of PARP cleavage to caspase-8 is negative in some
cases, even if it is known to have a pro-apoptotic func-
tion, invalidating certain parameter sets.

Dominant parameter selection
When global sensitivities are determined by averaging
local sensitivities as we did above, no assumptions are
made in the relationships between input parameters and
output variables, so this method is applicable in most
nonlinear and non-monotonic problems. For the model
of TRAIL-induced apoptosis, the significance of each rate
parameter to the total model output variation can be
identified by global sensitivity analysis in a matrix of 70
parameters (inputs) by 58 variables (molecular species,
here the outputs) (Figure 3). The height of each bar repre-
sents the global parameter sensitivity of the correspond-
ing species concentration with respect to changes in the
reaction rate constant, or parameter. We observed that
certain rate constants, such as p(1), the rate of complex
formation between TRAIL and free, inactive receptor,
p(29), the rate of dissociation of TRAIL and receptor, or
p(57) the rate of dissociation of the activated TRAIL-
receptor complex, can influence most protein concentra-
tion outputs. Therefore, some of the parameters involved
in the reactions for activating the receptor complex are
critical to the quantitative description of most down-
stream molecular species. Meanwhile other parameters
have nearly zero sensitivity and thus do not affect any
species concentration. Two of these parameters corre-
spond to the reactions for dissociating the complex of the
active caspase-8 and inactive caspase-3 (p(33)), and the
complex of cytochrome c and the mitochondrial pores
(p(48)). While these parameters will be difficult to con-
strain with any time series data, our analysis shows that
their value should not impact model behavior. For
TRAIL-induced apoptosis, the experimental data to
which we aim to fit the model describes the cleavage of
PARP, which marks the activation of caspase-3 and cell
death. Therefore, we compared the 70 rate parameters
based on their sensitivity to cleaved PARP (Figure 4, top)
and observed that eight parameters had a large impact
(Table 2).

Importantly, there are often biologically meaningful
quantities of interest for which partial derivatives cannot
be defined, and these may be the outputs for which the
dominant parameters need to be identified. For example,
for TRAIL-induced apoptosis we can define biologically
meaningful features of the dynamic behavior of cell
death. One example is the delay time (tdelay) that measures
how long it takes from the time of TRAIL addition to the
time at which 50% of PARP is cleaved. Another is the
switching time (tswitch), which measures the rapidity of
PARP cleavage after caspase-3 (C3) activation. These fea-
tures are variables that are discontinuous with respect to
input parameter variation, and to determine the domi-
nant parameters in controlling tdelay, we therefore
explored other sensitivity analysis methods to replace
gradient-based sensitivity analysis.

Variance-based sensitivity methods form another cate-
gory of global sensitivity analysis. In using these methods,
the variance of a model output is decomposed into partial
variances contributed by individual model input varia-
tions, and the sensitivity indices are derived from the
ratio of the partial variance to the total variance of model
output. Among the several variance-based sensitivity
methods, we adopted Sobol's method [11] to analyze the
TRAIL-induced apoptosis model. Sobol's method gener-
ates two kinds of sensitivity indices. One is a first-order
sensitivity that measures the fractional contribution of
single inputs to the variance of output, neglecting any
interactions with other model inputs by maintaining
these at constant values. The other, a true global sensitiv-
ity, is the total effect sensitivity, or the sum of all the sen-
sitivities involving the model input of interest over the
full range of parameters values explored. These two sensi-
tivity indices were computed simultaneously by Monte
Carlo method and the results are summarized in Figure 4.
The computational cost for sensitivity analysis varies
widely by method, as shown in Table 2. Sobol's method
requires more computation (100,000 cases of randomly
selected parameter sets) to satisfy the convergence of the
Monte Carlo approximation while the average of local
sensitivities method converges with 2,000 sets of parame-
ter values.

To determine which parameters dominate the control
of PARP cleavage dynamics and tdelay, the model parame-
ters were ranked by highest to lowest amplitude in sensi-
tivities (Figure 4) and the eight most dominant
parameters from each of the three sensitivity indices are
listed in Table 2. The parameters that are commonly
selected by all three methods are bolded, and those
selected by two are underlined; the nomenclature of the
parameters follows that of Albeck et al[7]. For example,
k9, which is the forward reaction rate constant of PARP
cleavage by caspase-3, is ranked within the eight domi-
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nant parameters by all three sensitivity indices. k3 and kc1,
relevant to caspase-8 activation and death ligand binding
to the receptor respectively, are also dominant by all three
methods. Even though all the reactions in the network
play a role in cell death signaling, the sets of reactions rate
constants listed in Table 2 were identified as the most
critical in regulating the dynamic of PARP cleavage. This
prediction, that reactions relevant to caspase-8 activation
are critical in regulating the delay time to death was
arrived at by our computational sensitivity analysis, but,
importantly, it is supported by experimental evidence: the
reactions involved in caspase-8 substrate cleavage
strongly influence tdelay [19].

Once the ranking of parameters has been determined,
the next question is how many parameters to target dur-
ing a calibration to accurately capture network behavior.
While there are no general and definitive criteria, it
should be noted that estimation of too many parameters
increases the number of degrees of freedom and the
probability that inadequate local optima are detected. On
the other hand, choosing too few parameters decreases
fitting performance as well as the reliability of the optimal
solution. To address this trade-off, we used the ranked
parameters to determine the optimal cut-off for the cali-
bration of the model of TRAIL-induced cell death. In Fig-
ure 4b, the 70 parameters on the x-axis were ordered by
their ranking number (determined from Figure 4a). We
observed that the sensitivities dropped off sharply after a
few steps - ranked sensitivities generated L-shaped
curves. The three different sensitivity algorithms have a
common property that the parameter of 8th highest sensi-
tivity was approximately at the border between horizon-
tal and vertical lines. This analysis suggested that for this
particular model, the eight most sensitive parameters can
cover much of the variation in PARP cleavage, and should
be sufficient to include in model calibration.

Parameter estimation by global optimization
Most models of biological processes are non-linear and
thus model parameter estimations are complex problems
that can have multiple solutions. To avoid potentially
poor decisions made by identification of local optima, it
is essential to develop a search for the global solution.
Global optimization methods are roughly categorized
into deterministic and stochastic approaches. A concep-
tual illustration of these two approaches is given in Figure
5. Here, the 2-dimensional parameter space of two rate
constants (k8 and k9, in this example) was explored. As
the contour of the objective function showed, there exists
a valley-shaped optimum in the lower part of parameter
space. It is interesting that this characteristic contour of
the objective function is relevant to the discussion of
dominant parameters in sensitivity analyses. The param-

eter k8 was ranked as one of the eight most influential by
only one type of sensitivity analysis (average of local sen-
sitivities), while k9 is ranked by all three sensitivities
(Table 2). So it is expected that perturbations of k9 affect
the model output more strongly than changes in k8 do.
The valley-shaped contour of objective function in k8 vs.
k9 parameter space indeed supports this idea, because the
slope in much steeper in the k9 than in the k8 axis.

Among the various approaches for global parameter
estimation, the simplest one is the deterministic multi-
start method where a large number of local estimations
start from different initial parameter combinations (Fig-
ure 5(a); red circles). The logarithmic space of parameters
is divided uniformly in a grid and deterministic local esti-
mation starts from every grid point, comparing the fit of
nearby points. Because the entire parameter space is
explored, the guarantee for finding the global optimum is
high, as long as the grid samples the space sufficiently
well. In Figure 5(a), parameter sets starting from initial
grid points converge to the points aligned along the valley
after local estimations have terminated. However the
computational load increases exponentially with the
number of parameters, as dimensions are added to the
sampling grid. To overcome this difficulty, random sam-
pling in a Latin hypercube of parameter space[20] or par-
allel computing with cluster processors could be utilized.

Stochastic methods on the other hand, can find the
global solution with relatively less computational effort.
These methods start with parameter values that are ran-
domly sampled in parameter space, and, according to a
set of rules, explore new solutions in the neighborhood of
the initial point looking for a better solution and repeat
until no further improvement of fit is found. Genetic
algorithms and simulated annealing are well known
examples of stochastic methods[21]. In a comparative
study of various optimization methods, Stochastic Rank-
ing Evolutionary Strategy (SRES) showed the best perfor-
mance [15]. In SRES, a "population" composed of
randomly selected "elements", or sets of parameter val-
ues, is generated. The elements are ranked by their fit to
the data using a bubble-sort procedure[22]. Only highly
ranked elements are retained as ancestors for the next
generation, which are used to probabilistically produce a
new population of random elements with a better fit, on
average. The source code of SRES is available in the pub-
lic domain[23].

For the model of TRAIL-induced cell death, we com-
pared the performances of the deterministic multi-start
method and SRES in a global optimization of the eight
most dominant parameters identified by average of local
sensitivities. For the multi-start method, local estima-
tions started from the lower bound, middle value and
upper bound in the range of each parameter so that the
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total number of cases was 6561 (= 38). Out of 6561 local
estimations, 6550 cases successfully detected their adja-
cent optimum solutions, although 11 cases failed due to
their poor initial guess values. In Figure 6(a), the results
of all the local estimations were sorted according to the
magnitude of their objective function (see Methods for
definition); every point in the curve indicates individual
local optimum; the best fit had an objective function of
0.2435. The optimal parameter values are listed in Addi-
tional File 1, and fits to data are shown for a local opti-

mum and a global optimum case (Figure 6(b) and 6(c),
respectively).

It is not surprising that many local minima were
detected using a multi-start method because nonlinear
and complex models like cell signaling networks usually
exhibits objective function surfaces with multiple local
optima. The plateaus near the global optimum and
around the objective function values of 40 and 100 in Fig-
ure 6(a) could be due to: 1) a wide well on the hypotheti-
cal surface of parameter space so that estimations from
many nearby starting points converge to a single minimal

Figure 3 Global sensitivity matrix of TRAIL-induced cell death model. The height of bars represents the global sensitivity for all 58 model outputs 
with respect to change in 70 kinetic reaction rate constants, as determined by average of local gradient-based sensitivities.
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solution, allowing us to easily arrive at the optimal solu-
tion or 2) a valley-shaped local optima on the surface of
objective function. Because a wide well on the surface of
parameter space is rare in network models, the most
likely causes of the plateaus were valley-shaped optima.
Along a valley, solutions may be distinct if they are
located far apart from one another, but nevertheless fit
the model in similarly well. Ideally, when constructing
predictive models, this situation should be avoided by
reducing valleys to more focused wells on the surface of
parameter space by adding constraints to the optimiza-
tion problem.

Despite its ability to find good fits to the data, the
multi-start method had the critical drawback of having a
heavy computational load (Table 3). As an alternative,
optimization was significantly accelerated by using SRES
(Table 3). For SRES, the initial population of parameter
value combinations, or "elements", was generated by ran-
dom selection from a uniform distribution over the 8-
dimensional parameter space with the boundaries
described in Methods. The population was composed of
200 individuals and, for each round, 30 individuals with
best fits were defined as parents for the next generation.
To decide when to terminate the optimization, we posed
as a requirement a minimum of a double-digit decline in
the objective function value from the first generation, and
the estimation was stopped at the 33rd generation, after
~2 h of computation time. Using this fast method, we
compared the fits obtained by including each of the three
sets of dominant parameters obtained by the different
sensitivity analysis methods. We found that the set of
parameters identified by the average of local sensitivities
was the best, although none of the fits obtained were as
good as that obtained with the deterministic multi-start
method (Tables 2, 3). If, in the case of the parameters
identified with the average of local sensitivities, we
allowed the evolution to proceed further, the fit did
improve very slowly while the CPU usage time increased
significantly (Table 3). To obtain a goodness-of-fit equiv-
alent to that achieved with the deterministic multi-start

method, we implemented a previously described hybrid
method[24]. Using this method, the optimization was
carried out in two sequential phases: first, a local solution
in the vicinity of the global optimum was rapidly reached
by the SRES method and, second, the solution was
refined by a fast local estimation method until a pre-
defined tolerance was satisfied (see Methods). As Table 3
shows, this hybrid method could fit the model in much
less computation time than the deterministic multi-start
method, with an objective function as good as that
obtained with the laborious multi-start method. Gener-
ally, the choice of optimization methods is dependent on
not only model type but also on resource availability or
approximation tolerance. Each method may have differ-
ent performance for different models. With respect to the
model in this study, the combination of SRES and local
estimation performed the most efficient survey of the
parameter space in a global optimization results. This
efficiency was due to its combination of rapid stochastic
surveying of the whole space and deterministic searching
within local regions.

Influence of dominant parameter choice on optimization
To validate our choice of eight dominant parameters to
estimate, we examined goodness-of-fit and computa-
tional cost while varying the number of parameters to be
estimated for two deterministic optimization methods,
where the number of parameters optimized has the great-
est impact on computation time. In Figure 7, we show
CPU time for the multi-start search and optimal objective
function values as a function of the number of parame-
ters estimated, for both the local search and the multi-
start search. The fit to the data at the global optimum
solution detected by multi-start search improved with
increasing number of parameters, reaching a plateau at
eight parameters, while computational cost increased
exponentially. Importantly, the performance of the local
search deteriorated significantly when the number of
parameters increased. This is because when the local
search starts from a poor initial guess, the chance of

Table 2: Comparison of results from different global sensitivity indices

Average of local sensitivities Sobol's first order sensitivity Sobol's total effect 
sensitivity

8 dominant parameters* k8, k9, k5, kc1, k3, k1, k-_1, k4 kc1, k12, k3, k13, k9, k24, k10, k-1 kc1, k3, k12, k9, k13, k1, k10, k5

CPU time 24 hours 160 hours 160 hours

Objective function† 3.546 8.364 7.745

* The common parameters identified by all the sensitivity indices were highlighted in bold style and the parameters by any of two different 
sensitivity indices were underlined.
† Global optimization (Evolutionary Strategy using Stochastic Ranking) was executed with respect to the parameter combination selected by 
each sensitivity index.
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arriving at local optimum solutions with poor fitting per-
formance increases, and with a larger parameter space to
sample, the local search is more likely to start from a poor
initial guess. This result shows how important it is to
apply a global, or hybrid, optimization algorithm to
obtain the best fits (Table 1), or to adequately limit the
search space when using a local search. Overall, the good
performance (using a multi-start search) and affordable
computational cost lead us to conclude that choosing the
eight parameters identified as dominant in global sensi-
tivity analysis for quantitative model fitting was indeed an

appropriate compromise. Fitting more than eight param-
eters for the TRAIL model optimization would yield only
little improvement in fit, at much greater computational
cost. The number of dominant parameters in a particular
model would certainly be dependent on its size and com-
plexity, but the sensitivity analysis-based method
described above allows their identification.

Finally, Figure 8 shows how much the model improved
using our method relative to the manual calibration used
in the original study [7]. It is noteworthy that adjustment
of a few important parameters could substantially

Figure 4 Comparison of different global sensitivity algorithms. Three different sensitivities, which are average of local sensitivities, Sobol's first 
order sensitivity, and Sobol's total effect sensitivity, are compared. (a) Bar graph showing the global sensitivity for PARP cleavage for the 70 kinetic 
parameters. (b) Plot showing the global sensitivity for PARP cleavage vs. parameter number, for parameters sorted according to the magnitude of their 
sensitivity
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improve agreement between model output and experi-
mental data. The procedure to identify those important
parameters and estimate them is straightforward by sys-
tematic methodology compared to manual calibration
which is inevitably labor-intensive and time-consuming
with less guarantee of successful model fitting.

Conclusion
In this report, we proposed a framework for efficiently
calibrating computational models of biological systems,
and applied it to a model of TRAIL-induced apoptosis

while comparing several sensitivity analysis methods and
model optimization algorithms. Importantly, we showed
how sensitivity analysis can be used to rapidly test
whether the model structure adequately allows qualita-
tive matching to the behavior of the biological system.
This step implements a minimal qualification, focusing
the initial search on the qualitative performance of the
proto-model. Within our framework, this validation step
is required before proceeding to quantitative optimiza-
tion of the model, ensuring that computationally costly
optimization algorithms are used effectively. Further-

Figure 5 Deterministic and stochastic sampling of 2D parameter space. Plots show the initial and final parameter value combinations on the pa-
rameter space for k8 and k9 during global optimization process by (a) deterministic multi-start method and (b) evolutionary strategy using stochastic 
ranking. Starting points are indicated by red circles (top) and endpoints by blue triangles (bottom). Common contour of all sections represents the 
surface of the objective function.
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more, we showed how global sensitivity analysis methods
can be used to identify the parameters that dominantly
regulate the dynamics of the output of interest. With the
application of Sobol's algorithms, we were also able to
identify parameters that control the TRAIL-induced
delay time to cell death (tdelay), a biologically relevant
quantity that is not a state variable of the model.
Undoubtedly, this type of sensitivity analysis will prove
useful within our outlined framework for other models as
well, for example in models of oscillatory systems where,

in certain cases, the period of the oscillations is more
meaningful than their amplitude. Finally, while compar-
ing different model calibration algorithms, we showed
that global sensitivity analysis could successfully identify
the parameters to include in quantitative optimization,
allowing great computational savings by constraining the
search to the important model dimensions. In the future,
we foresee that the predictive quality of models would be
further improved by repeating this cycle of model valida-
tion, identification of dominant parameters and optimi-

Figure 6 Quantitative model calibration by multi-start method. (a) Plot showing the multiple optimal solutions obtained by deterministic multi-
start global optimization and sorted according to the magnitude of the objective function. (b, c) Plot comparing the simulated time course of PARP 
cleavage (lines) to single-cell data (diamond, triangle and circle markers) for cells treated with 250 ng/mL (blue), 50 ng/mL (red), or 10 ng/mL (green) 
TRAIL. Models simulations were derived from a local optimum (b) or a global optimum (c) of the deterministic multi-start global optimization.
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zation with different model outputs that are controlled by
other parameters, allowing the determination of more
and more parameter values.

Methods
Mathematical model and experimental data
The serial methodology was applied to fit a recently
described mathematical model of TRAIL-induced cell
death signaling [7]. This model is composed of ordinary
differential equations based on mass action kinetics.
Although most ODE models assume simply that the
inside of cell is a mixed soup and do not include spatial
information, the original model describes reactions and
transport of molecular species in two compartments;
cytoplasm and mitochondria. The authors verified that
sudden activation of effector caspase after a long delay is
related to permeabilization of the mitochondrial mem-
brane and relocalization of certain proteins. To evaluate
our methodology, we carried out model calibration using
the original ODE model and the experimental data. The
live-cell imaging data were obtained by microscopy mon-

itoring of a population of HeLa cells treated with 10 ng/
ml, 50 ng/ml, or 250 ng/ml of TRAIL and 2.5 μg/ml
cycloheximide [7]. Although the cells were isogenic, the
delay period until sudden death (tdelay) varied from cell to
cell due to inherent fluctuations in cell state [19]. Figure
2B in [7] actually shows 5 examples of single-cell dynamic
data for each condition; these examples were chosen after
monitoring well over 100 cells in each condition. How-
ever we focus here on deterministic modeling at the sin-
gle-cell level. Thus, for each condition we chose a single
representative cell whose tdelay is the median in the popu-
lation of more than 100 cells. The cleavage of effector cas-
pase reporter protein (EC-RP) was quantified at 3-min
intervals, and used for fitting the model output corre-
sponding to cleavage of PARP, the effector caspase sub-
strate. In addition, once the rapid cleavage of EC-RP is
complete, then the output signal cannot be accurately
measured by microscopy - it becomes extremely noisy as
the cells detaches from the surface and moves out of the
focal plane, and thus poorly reports cellular activity.
Therefore we neglected the fluctuations in the experi-
mental data after cleavage of PARP reaches a value of 1.
Instead, we fit the model to a plateau with a value of one.

We used the weighted least squares method for param-
eter estimation. The objective function to minimize is

where p is the set of parameters, Nexp is the number of

experiments, wi is the weight associated with the mea-

surement of the ith experiment, , and yi(p) is the corre-

sponding value computed from the model. The weight

may be given differently depending on reliability of spe-

cific experimental measurement. If there are uncertain or

less confident data points, those should take less part in
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Figure 7 Effect of number of parameters on model calibration 
performance. Effect of varying the number of parameters included in 
model calibration on model fit, considering local or multi-start deter-
ministic search and CPU usage time for global multi-start optimization.
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Table 3: Comparison of estimation performance by different optimization algorithms

Local optimization Multi-start of local 
optimization

SRES†(G‡ = 33) SRES (G = 300) SRES (G = 33) & local 
optimization

Number of surveyed 
parameter 

combinations

1 6561 6600 60000 6600

CPU time ~1 minute 2600 hours 2 hours 18 hours 2 hours

Objective function 45.04 0.2447 3.546 1.739 0.2679

† SRES, Evolutionary Strategy using Stochastic Ranking;‡ G, generation number of evolution.
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evaluating the objective function by using smaller weight

than other data points. Since we took all the data with

equal importance, the weights were all set equal to 1 in

this case. The estimation calculation was stopped if the

normalized difference of objective function values

between two successive iterations was less than 1E-6.

Parameter space
The plausible range for uncertain rate constant parame-
ter values was set around a nominal value of the corre-
sponding parameter. For most parameters, the upper and
lower bounds were set as 100 and 1/100 times the nomi-
nal value, respectively. For several parameters whose
nominal values are considered to be relatively certain by
previous experiences we set narrower ranges to minimize
the effect of uncertain parameter values in the global sen-
sitivity analysis. For instance, forward, backward and cat-
alytic rate constants relevant to caspase-3 cleavage by
caspage-8 (k5, k–5, kc5), caspase-6 cleavage by caspage-3
(k6, k–6, kc6), PARP cleavage by caspase-3 (k9, k–9, kc9),
Bid activation by cleaved caspase-8 (k10, k–10, kc10), Bcl2
reacting with activated Bax in the mitochontrial com-
partment (k14, k–14), Bax2 reacting with Bcl2 (k16, k–16),

Bax4 reacting with Bcl2 (k18, k–18), Cytochrome c and
Smac release from mitochondria (k20, k–20, kc20, k21, k–21,
kc21) had a range set to between 10 and 1/10 times of
their nominal value. The rate constants regarding ubiq-
uitination of cleaved caspase-3 by XIAP (k8, k–8, kc8) and
XIAP reacting with the apoptosome and Smac (k27, k–27,
k28, k–28) have an even narrower range between 2 and 1/2
times the nominal value. The nomimal values were either
obtained from the literature or set by trial and error to
allow the model to reproduced experimental data, as pre-
viously described [7].

Computations
All computations were performed using JACOBIAN® 4.0,
a dynamic modeling software provided by Numerica
Technology, LLC. The local estimation was executed by
the built-in JACOBIAN® function of Limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) estima-
tion solver and a weighted least square objective function.
The High-Performance Computing facility at Harvard
Medical School was utilized for intensive computations.
The repetitive jobs of the multi-start estimation as well as
Sobol's sensitivity analysis were parallelized and distrib-
uted to over 200 computing nodes (AMD dual core pro-
cessors). For comparisons between different algorithms,

Figure 8 Improvement of model fitting by systematic calibration process. (a) Model fitting with the basal rate constants which were manually 
calibrated [7]. (b) Model fitting with the estimated rate constants by the systematic calibration process.

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

Time [hour]

P
A

R
P

 c
le

av
ag

e

Before systematic calibration

 

 

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

Time [hour]

P
A

R
P

 c
le

av
ag

e

After systematic calibration

 

 

Experiment of 250ng/ml TRAIL + cycloheximide
Experiment of 50ng/ml TRAIL + cycloheximide
Experiment of 10ng/ml TRAIL + cycloheximide
Simulation of 250ng/ml TRAIL + cycloheximide
Simulation of 50ng/ml TRAIL + cycloheximide
Simulation of 10ng/ml TRAIL + cycloheximide

(a) (b)



Kim et al. BMC Bioinformatics 2010, 11:202
http://www.biomedcentral.com/1471-2105/11/202

Page 14 of 14
the CPU usage time of each node was summed as if a sin-
gle computing machine was utilized.

Additional material
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